Ejercicios de puntos en el espacio

Ejercicios propuestos

1Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas de los vértices C y D.Solución

2Dado el triángulo de vértices A(2, 3, 4), B(1, −1, 5) y C(5, 5, 4), hallar:

1Las ecuaciones de las medianas del triángulo

2Las coordenadas del baricentro del triángulo.

3Las coordenadas del baricentro del triángulo cuyos vértices son los puntos medios de los lados del triángulo anterior.Solución

3Hallar la ecuación de la recta que pasa por los puntos A (2, 3, 4) y B(8, −2, 3). Estudiar si el punto C(2, 1, 3) está alineado con A y B.Solución

4Determinar los valores de m para que los puntos A(m, 2, −3), B(2, m, 1) y C(5, 3, −2) estén alineados y hallar las ecuaciones de la recta que los contiene.Solución

5Determinar el valor de x para que los puntos A(0, 0, 1), B(0, 1, 2), C(−2, 1, 3) y D(x, x-1, 2) sean coplanarios.Solución

6¿Qué en relación se ha de verificar entre los parámetros a, b y c para que los puntos A(1, 0, 1), B(1, 1, 0), C(0, 1, 1) y D(a, b, c) sean coplanarios?Solución

7Calcular el valor de a para que los puntos (a, 0, 1), (0, 1, 2), (1, 2, 3) y (7, 2, 1) sean coplanarios. Calcular también la ecuación del plano que los contiene.Solución