Programación lineal 3

Ejercicio nº 3

En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

 1  Elección de las incógnitas.

x = X

y = Y

 2  Función objetivo

f(x,y) = 10x + 30y

 3  Restricciones

  X Y Mínimo
A 1 5 15
B 5 1 15

x + 5y ≥ 15

5x + y ≥ 15

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

gráfica

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

gráfica

 6  Calcular el valor de la función objetivo

f(0, 15) = 10 · 0 + 30 · 15 = 450

f(15, 0) = 10 · 15 + 30 · 0 = 150

f(5/2, 5/2) = 10 · 5/2 + 30 · 5/2 = 100   Mínimo

El coste mínimo son 100 € para X = 5/2 e Y = 5/2.