Programación lineal 1

Ejercicio nº 1

Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

 1  Elección de las incógnitas.

x = nº de lámparas L1

y = nº de lámparas L2

 2  Función objetivo

f(x, y) = 15x + 10y

 3  Restricciones

Pasamos los tiempos a horas

20 min = 1/3 h

30 min = 1/2 h

10 min = 1/6 h

Para escribir las restricciones vamos a ayudarnos de una tabla:

L1 L2 Tiempo
Manual 1/3 1/2 100
Máquina 1/3 1/6 80

1/3x + 1/2y ≤ 100

1/3x + 1/6y ≤ 80

Como el número de lámparas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

 4  Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).

1/3·0 + 1/2·0 ≤ 100

1/3·0 + 1/6·0 ≤ 80

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

gráfica

 5  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima si es única se encuentra en un vértice del recinto. estos son las soluciones a los sistemas:

1/3x + 1/2y = 100; x = 0 (0, 200)

1/3x + 1/6y = 80; y = 0(240, 0) 

1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60) 

gráfica

 6  Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 15x + 10y

f(0, 200) = 15·0 + 10·200 = 2 000 €

f(240, 0 ) = 15·240 + 10·0 = 3 600 €

f(210, 60) = 15·210 + 10·60 = 3 750 €    Máximo

La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un beneficio de 3 750 € .