Ecuación canónica o segmentaria

La ecuación canónica o segmentaria de la recta es la expresión de la recta en función de los segmentos que ésta determina sobre los ejes de coordenadas.

gráfica

Ecuación canónica o segmentaria

a es la abscisa en el origen de la recta.

b es la ordenada en el origen de la recta.

Los valores de a y de b se se pueden obtener de la ecuación general.

Si y = 0 resulta x = a.

Si x = 0 resulta y = b.

Una recta carece de la forma canónica en los siguientes casos:

1 Recta paralela a OX, que tiene de ecuación y = n

2 Recta paralela a OY, que tiene de ecuación x = k

3 Recta que pasa por el origen, que tiene de ecuación y = mx.

Ejemplo:

1 Una recta determina sobre los ejes coordenados, segmentos de 5 y 3 unidades, respectivamente. Hallar su ecuación.

ecuación

2 Hallar la ecuación canónica de la recta que pasa por P(−2, 1) y tiene por vector director v = (3, −4).

Hallamos la ecuación en forma continua:

Ecuación continua

Pasamos a la general:

−4x −8 = 3y -3 4x + 3y + 5 = 0

Si y = 0 flechas x = −5/4 = a.

Si x = 0 flechas y = −5/3 = b.

Ecuación canónica o segmentaria


La recta r ≡ x − y + 4 = 0 forma con los ejes un triángulo del que se pide su área.

La recta forma un triángulo rectángulo con el origen y sus catetos son la abscisa y la ordenada en el origen.

Si y = 0 flechas x = −4 = a.

Si x = 0 flechas y = 4 = b.

La ecuación canónica es:

ecuación

El área es:

área

3 Una recta pasa por el punto A(1. 5) y determina con los ejes de coordenadas un triángulo de 18 u2 de superficie. ¿Cuál es la ecuación de la recta?

Aplicamos la ecuación canónica:

canónica

El área del triángulo es:

área

Resolvemos el sistema:

sistema

sistema

sistema

ecuación

ecuación


4 Sabemos que una recta pasa por el punto A(3, 2) y que determina sobre los ejes coordenados, segmentos de doble longitud en el eje de abscisas, que en el de ordenadas. Hallar la ecuación de esta recta.

dibujo

operaciones

operaciones


Principio de la página
Inicio
Índice del tema
Imprimir página

Tienda de Cursos Interactivos Vitutor
Tema
Ejercicios
Ejercicios interactivos
Otros ejercicios
Sitio
Compartir: