Ejercicios de la ecuación de la recta tangente y normal

1Dada la parábola f(x) = x2, hallar los puntos en los que la recta tangente es paralela a la bisectriz del primer cuadrante.

2Dada la curva de ecuación f(x) = x2 − 3x − 1, halla las coordenadas de los puntos de dicha curva en los que la tangente forma con el eje OX un ángulo de 45°.

3Determinar los valores del parámetro b, para qué las tangentes a la curva de la función f(x) = b2x3 + bx2 + 3x + 9 en los puntos de abscisas x = 1, x = 2 sean paralelas.

4Calcular los puntos en que la tangente a la curva y = x3 − 3x2 − 9x + 5 es paralela al eje OX.

5Se ha trazado una recta tangente a la curva y= x3, cuya pendiente es 3 y pasa por el punto (0,−2). Hallar el punto de tangencia.

6Buscar los puntos de la curva f(x) = x4 + 7x3 + 13x2 + x +1, para los cuales la tangente forma un ángulo de 45º con OX.

7Dada la función f(x) = tg x, hallar el ángulo que forma la recta tangente a la gráfica de la función f(x) en el origen, con el eje de abscisas.

8Calcular la ecuación de la tangente y de la normal a la curva f(x) = ln tg 2x en el punto de abscisa: x = π/8.

9Hallar los coeficientes de la ecuación y = ax2 + bx + c, sabiendo que su gráfica pasa por (0, 3) y por (2, 1)., y en este último punto su tangente tiene de pendiente 3.

10La gráfica de la función y = ax2 + bx + c pasa por los puntos (2, 3) y (3, 13). siendo la tangente a la misma en el punto de abscisa 1 paralela a la bisectriz del primer cuadrante. Hallar el valor numérico de a, b y c.

11Dada la función  f(x) = ax3 + bx2 + cx + d, determina a, b, c y d; sabiendo que la curva pasa por los puntos (−1, 2) (2, 3), y que las tangentes a ellas en los puntos de abscisa 1 y −2 son paralelas al ejes de abscisas.

12¿En qué punto de la curva y = ln x, la tangente es paralela a la cuerda que une los puntos (1, 0) y (e, 1)?

13Dada la ecuación 9x2 + y2= 18, hallar la ecuación de la recta tangente que sea paralela a la recta de ecuación 3x − y + 7 = 0.

14Hallar el área del triángulo determinado por los ejes de coordenadas y la tangente a la curva xy = 1 en el punto x = 1.

Soluciones >>>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

Ejercicio 1 resuelto

Dada la parábola f(x) = x2, hallar los puntos en los que la recta tangente es paralela a la bisectriz del primer cuadrante.

y = xm= 1

f'(a) = 1.

derivada

derivada

punto

gráfica

Ejercicio 2 resuelto

Dada la curva de ecuación f(x) = x2 − 3x − 1, halla las coordenadas de los puntos de dicha curva en los que la tangente forma con el eje OX un ángulo de 45°.

Cálculo de derivadas por la definición

Cálculo de derivadas por la definición

Cálculo de derivadas por la definición

Cálculo de derivadas por la definición

Cálculo de derivadas por la definición

Cálculo de derivadas por la definición

Ejercicio 3 resuelto

Determinar los valores del parámetro b, para qué las tangentes a la curva de la función f(x) = b2x3 + bx2 + 3x + 9 en los puntos de abscisas x = 1, x = 2 sean paralelas.

Para que sean paralelas se tiene que cumplir que las derivadas en x = 1 y x = 2 sean iguales.

f'(1) = f'(2)

f'(x) = 3b2x2 + 2bx + 3

f'(1) = 3b2 + 2b + 3

f'(2) = 12b2 + 4b + 3

3b2 + 2b + 3 = 12b2 + 4b + 3

9b2 + 2b = 0

b = 0 b = −2/9

Ejercicio 4 resuelto

Calcular los puntos en que la tangente a la curva y = x3 − 3x2 − 9x + 5 es paralela al eje OX.

y' = 3x2 − 6x − 9;     x2 − 2x − 3 = 0 (simplificando por 3)

x1 = 3 y1 = −22

x2 = −1y2 = 10

A(3, −22) B(−1, 10)

Ejercicio 5 resuelto

Se ha trazado una recta tangente a la curva y= x3, cuya pendiente es 3 y pasa por el punto (0,−2). Hallar el punto de tangencia.

Sea el punto de tangencia (a, f(a))

f' (x)= 3x2f' (a)= 3a2

3a2=3a = ±1

Las ecuaciones de la rectas tangentes son:

a = 1 f(a) = 1

y − 1 = 3(x − 1) y = 3x−2

a = −1 f(a) = −1

y + 1= 3(x + 1) y = 3x + 2   

El punto (0, −2) pertenece a la recta  y = 3x−2.

Por tanto el punto de tangencia será (1, 1) .

Ejercicio 6 resuelto

Buscar los puntos de la curva f(x) = x4 + 7x3 + 13x2 + x +1, para los cuales la tangente forma un ángulo de 45º con OX.

m = 1

f'(x) = 4x3 + 21x2 + 26x +1

4x3 + 21x2 + 26x +1 = 1

x = 0 x = −2 x z= 13/4

P(0, 4) Q(−2, 4) R(13/4, 1621/256)

Ejercicio 7 resuelto

Dada la función f(x) = tg x, hallar el ángulo que forma la recta tangente a la gráfica de la función f(x) en el origen, con el eje de abscisas.

f′(x) = 1 + tg² x       f′(0) = 1 = m

y = x

α = arc tg 1 = 45º

Ejercicio 8 resuelto

Calcular la ecuación de la tangente y de la normal a la curva f(x) = ln tg 2x en el punto de abscisa: x = π/8.

Solución

Solución

Solución

Solución

Solución

Solución

Ejercicio 9 resuelto

Hallar los coeficientes de la ecuación y = ax2 + bx + c, sabiendo que su gráfica pasa por (0, 3) y por (2, 1)., y en este último punto su tangente tiene de pendiente 3.

Pasa por (0, 3) 3 = c

Pasa por (2, 1) 1= 4a + 2b + c

y' = 2ax + b 3 = 4a + b

Resolviendo el sistema se obtiene:

a = 2 b = −5 c = 3

Ejercicio 10 resuelto

La gráfica de la función y = ax2 + bx + c pasa por los puntos (2, 3) y (3, 13). siendo la tangente a la misma en el punto de abscisa 1 paralela a la bisectriz del primer cuadrante. Hallar el valor numérico de a, b y c.

Pasa por (2, 3) 3 = 4a + 2b + c

Pasa por (3, 13)13 = 9a + 3b +c

y' = 2ax + b 1 = 2a + b

Resolviendo el sistema se obtiene:

a = 3 b = −5 c =1

Ejercicio 11 resuelto

Dada la función  f(x) = ax3 + bx2 + cx + d, determina a, b, c y d; sabiendo que la curva pasa por los puntos (−1, 2) (2, 3), y que las tangentes a ellas en los puntos de abscisa 1 y −2 son paralelas al ejes de abscisas.

f(−1) = 2 −a + b − c + d = 2

f(2) = 3 8a + 4b + 2c + d = 3

f′(−1) = 0 3a + 2b + c = 0

f′(2) = 0 12a − 4b + c = 0

a = − 2 /9 b = − 1 /3 c = 4/3 d = 31/9  

Ejercicio 12 resuelto

¿En qué punto de la curva y = ln x, la tangente es paralela a la cuerda que une los puntos (1, 0) y (e, 1)?

La pendiente de la cuerda tiene que ser igual a la derivada de la función.

solución

solución

solución

Ejercicio 13 resuelto

Dada la ecuación 9x2 + y2= 18, hallar la ecuación de la recta tangente que sea paralela a la recta de ecuación 3x − y + 7 = 0.

Sea el punto de tangencia (a, b)

y = 3x + 7 m = 3

Derivando implícitamente tenemos:

operaciones

operaciones

operaciones

operaciones

operaciones

Ejercicio 14 resuelto

Hallar el área del triángulo determinado por los ejes de coordenadas y la tangente a la curva xy = 1 en el punto x = 1.

Áera del triángulo

Áera del triángulo

Áera del triángulo

Áera del triángulo

Áera del triángulo

Áera del triángulo

<< Ejercicios