1

Calcula los puntos en que la tangente a la curva es paralela al eje .

Solución

Calcula los puntos en que la tangente a la curva es paralela al eje .

El eje tiene de ecuación , por tanto

Igualamos la derivada primera a para hallar los puntos de tangencia

;     (simplificando por )

Hallamos las segundas coordenadas sustituyendo en la función

2

Se ha trazado una recta tangente a la curva , cuya pendiente es y pasa por el punto . Hallar el punto de tangencia.

Solución

Se ha trazado una recta tangente a la curva , cuya pendiente es y pasa por el punto . Hallar el punto de tangencia.

Sea el punto de tangencia

Igualamos la derivada primera a la pendiente

Las ecuaciones de la rectas tangentes son:

El punto pertenece a la recta .

Por tanto el punto de tangencia será .

3

Busca los puntos de la curva , para los cuales la tangente forma un ángulo de con .

Solución

Buscar los puntos de la curva , para los cuales la tangente forma un ángulo con .

Igualamos la derivada primera a la pendiente y resolvemos la ecuación

las segundas coordenadas se obtienen sustityendo en la función

4

Dada la función , hallar el ángulo que forma la recta tangente a la gráfica de la función en el origen, con el eje de abscisas.

Solución

Dada la función , hallar el ángulo que forma la recta tangente a la gráfica de la función en el origen, con el eje de abscisas.

5

Calcula la ecuación de la tangente y de la normal a la curva en el punto de abscisa: .

Solución

Calcula la ecuación de la tangente y de la normal a la curva en el punto de abscisa: .

Ecuación de la tangente:

Ecuación de la normal:

6

Hallar los coeficientes de la ecuación , sabiendo que su gráfica pasa por y por , y en este último punto su tangente tiene de pendiente .

Solución

Hallar los coeficientes de la ecuación , sabiendo que su gráfica pasa por y por , y en este último punto su tangente tiene de pendiente .

Pasa por

Pasa por

Resolviendo el sistema se obtiene:

7

La gráfica de la función pasa por los puntos y . siendo la tangente a la misma en el punto de abscisa paralela a la bisectriz del primer cuadrante. Hallar el valor numérico de y .

Solución

La gráfica de la función pasa por los puntos y . siendo la tangente a la misma en el punto de abscisa paralela a la bisectriz del primer cuadrante. Hallar el valor numérico de y .

Pasa por

Pasa por

Resolviendo el sistema se obtiene:

8

Dada la función , determina y ; sabiendo que la curva pasa por los puntos y , y que las tangentes a ellas en los puntos de abscisa y son paralelas al ejes de abscisas.

Solución

Dada la función , determina y ; sabiendo que la curva pasa por los puntos y , y que las tangentes a ellas en los puntos de abscisa y son paralelas al ejes de abscisas.

9

¿En qué punto de la curva , la tangente es paralela a la cuerda que une los puntos y ?

Solución

¿En qué punto de la curva , la tangente es paralela a la cuerda que une los puntos y ?

La pendiente de la cuerda tiene que ser igual a la derivada de la función.

10

La ecuación de un movimiento circular es: . ¿Cuál es la velocidad y la aceleración angulares al cabo de siete segundos?

Solución

La ecuación de un movimiento circular es: . ¿Cuál es la velocidad y la aceleración angulares al cabo de siete segundos?

11

Un observador se encuentra a de la torre de lanzamiento de un cohete. Cuando éste despega verticalmente mide la variación del ángulo que forma la línea visual que le une con el cohete y la del suelo horizontal en función del tiempo transcurrido. Sabiendo que , se pide:

a ¿Cuál es la altura del cohete cuando radianes?

b ¿Cuál es la velocidad del cohete cuando radianes?

Solución

Un observador se encuentra a de la torre de lanzamiento de un cohete. Cuando éste despega verticalmente mide la variación del ángulo que forma la línea visual que le une con el cohete y la del suelo horizontal en función del tiempo transcurrido. Sabiendo que , se pide:

a ¿Cuál es la altura del cohete cuando radianes?

triangulo rectangulo

b ¿Cuál es la velocidad del cohete cuando radianes?

12

Se bombea gas a un globo esférico a razón de /min. Si la presión se mantiene constante. ¿Cuál es la velocidad con la que cambia el radio del globo cuando el diámetro mide ?

Solución

Se bombea gas a un globo esférico a razón de /min. Si la presión se mantiene constante. ¿Cuál es la velocidad con la que cambia el radio del globo cuando el diámetro mide ?

Para resolver este problema necesitamos la fórmula del volumen en términos del radio:

Además, sabemos que la tasa de cambio del volumen es con unidades de .

Para poder relacionar las funciones necesitamos escribir al volumen en términos del tiempo. Esto lo haremos escribiendo , ya que el radio también varía con el tiempo. De este modo:

Ahora derivamos el volumen respecto al tiempo (utilizaremos la regla de la cadena):

Observemos que en la ecuación anterior ya tenemos todo lo que necesitamos. Ya conocemos , el cual es constante. Asimismo, es la variable que buscamos. Despejamos primero

No sabemos el tiempo, pero sabemos que el diámetro es 120 cm, es decir, el radio es 60 cm o 0.6 m. Sustituimos esos valores:

Por lo tanto, la respuesta es 1.33 m/min.

13

Hallar el ángulo de intersección entre las curvas y

Solución

Hallar el ángulo de intersección entre las curvas y

1Aplicamos la fórmula

2Igualamos ambas curvas

3Calculamos las pendientes

4Sustituimos en la fórmula del ángulo entre dos curvas


¡Tenemos el profe mates perfecto para ti!

¿Te ha gustado este artículo? ¡Califícalo!

4,00 (22 nota(s))
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗