Concepto de función

Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real.

f : D  f  R

   x   f   f(x) = y

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El número x perteneciente al dominio de la función recibe el nombre de variable independiente.

Al número, y, asociado por f al valor x, se le llama variable dependiente. La imagen de x se designa por f(x). Luego

y= f(x)

Se denomina recorrido de una función al conjunto de los valores reales que toma la variable y o f(x).

Dominio de una función

Dominio de la función polinómica entera

El dominio es R, cualquier número real tiene imagen.

Dominio de la función racional

El dominio es R menos los valores que anulan al denominador (no puede existir un número cuyo denominador sea cero).

Dominio de la función irracional de índice impar

El dominio es R.

Dominio de la función irracional de índice par

El dominio está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

Dominio de la función logarítmica

El dominio está formado por todos los valores que hacen que el radicando sea mayor que cero.

Dominio de la función exponencial

El dominio es R.

Dominio de la función seno

El dominio es R.

Dominio de la función coseno

El dominio es R.

Dominio de la función tangente

Tangente

Tangente

Dominio de la función cotangente

Cotangente

Cotangente

Dominio de la función secante

Tangente

Tangente

Dominio de la función cosecante

Cotangente

Cotangente

Dominio de operaciones con funciones

Dominio de operaciones de funciones

Dominio de operaciones de funciones

Gráfica de funciones

Si f es una función real, a cada par (x, y) = (x, f(x)) determinado por la función f le corresponde en el plano cartesiano un único punto P(x, y) = P(x, f(x)). El valor de x debe pertenecer al dominio de definición de la función.

Composición de funciones

Si tenemos dos funciones: f(x) y g(x), de modo que el dominio de la 2ª esté incluido en el recorrido de la 1ª, se puede definir una nueva función que asocie a cada elemento del dominio de f(x) el valor de g[f(x)].

f o i = i o f = f

Función inversa o recíproca

Se llama función inversa o reciproca de f a otra función f−1 que cumple que:

Si f(a) = b, entonces f−1(b) = a.

f o f -1 = f -1 o f = x

Cálculo de la función inversa

1.Se escribe la ecuación de la función en x e y.

2.Se intercambian las variables.

3.Se despeja la variable x en función de la variable y.

Crecimiento y decrecimiento

Tasa de variación

El incremento de una función se llama tasa de variación, y mide el cambio de la función al pasar de un punto a otro.

t.v.= f(x+h) - f(x)

Función estrictamente creciente

f es estrictamente creciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple:

EStrictamente creciente

EStrictamente creciente

La tasa de variación es positiva.

Función creciente

f es creciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple:

Creciente

Creciente

La tasa de variación es positiva o igual a cero.

Función estrictamente decreciente

f es estrictamente decreciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple:

Estrictamente decreciente

Estrictamente decreciente

La tasa de variación es negativa.

Función decreciente

f es decreciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple:

Decreciente

Decreciente

La tasa de variación es negativa o igual a cero.

Cotas

Función acotada superiormente

Una función f está acotada superiormente si existe un número real k tal que para toda x es f(x) ≤ k.

El número k se llama cota superior.

Función acotada inferiormente

Una función f está acotada inferiormente si existe un número real k′ tal que para toda x es f(x) ≥ k′ .

El número k′ se llama cota inferior.

Función acotada

Una función esta acotada si lo está a superior e inferiormente.

k′ ≤ f(x) ≤ k

Máximo absoluto

Una función tiene su máximo absoluto en el x = a si la ordenada es mayor o igual que en cualquier otro punto del dominio de la función.

Mínimo absoluto

Una función tiene su mínimo absoluto en el x = b si la ordenada es menor o igual que en cualquier otro punto del dominio de la función.

Máximo y mínimo relativo

Una función f tiene un máximo relativo en el punto a si f(a) es mayor o igual que los puntos próximos al punto a.

Una función f tiene un mínimo relativo en el punto b si f(b) es menor o igual que los puntos próximos al punto b.

Simetría

Una función f es simétrica respecto del eje de ordenadas cuando para todo x del dominio se verifica:

f(-x) = f(x)

Las funciones simétricas respecto del eje de ordenadas reciben el nombre de funciones pares.

Simetría respecto al origen

Una función f es simétrica respecto al origen cuando para todo x del dominio se verifica:

f(-x) = -f(x)

Las funciones simétricas respecto al origen reciben el nombre de funciones impares.

Funciones periódicas

Una función f(x) es periódica, de período T, si para todo número entero z, se verifica:

f(x) = f(x + z T)

Si tenenos una función periódica f(x) de periodo T, la función g(x) = f(kx) tiene de periodo:

periodo