Varianza

La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística.

La varianza se representa por signo.

varianza

varianza

Varianza para datos agrupados

varianzavarianza


Para simplificar el cálculo de la varianza vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.

varianzavarianza

Ejercicios de varianza

Ejercicio 1:

Calcular la varianza de la distribución:

9, 3, 8, 8, 9, 8, 9, 18

media

varianza

Ejercicio 2:

Calcular la varianza de la distribución de la tabla:

  xi fi xi · fi xi2 · fi
[10, 20) 15 1 15 225
[20, 30) 25 8 200 5000
[30,40) 35 10 350 12 250
[40, 50) 45 9 405 18 225
[50, 60 55 8 440 24 200
[60,70) 65 4 260 16 900
[70, 80) 75 2 150 11 250
    42 1 820 88 050

media

varianza

Propiedades de la varianza

1 La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.

2 Si a todos los valores de la variable se les suma un número la varianza no varía.

3 Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número.

4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total.

Si todas las muestras tienen el mismo tamaño:

varianzas

Si las muestras tienen distinto tamaño:

varianzas

Observaciones sobre la varianza

1 La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas.

2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza.

3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.


Principio de la página
Inicio
Índice del tema
Imprimir página

Tienda de Cursos Interactivos Vitutor
Tema
Ejercicios
Ejercicios interactivos
Otros ejercicios
Sitio
Compartir: