Media aritmética

La media aritmética es el valor obtenido al sumar todos los datos y dividir el resultado entre el número total de datos.

símbolo de la media aritmética es el símbolo de la media aritmética.

fórmula de la media

media

Ejemplo:

Los pesos de seis amigos son: 84, 91, 72, 68, 87 y 78 kg. Hallar el peso medio.

media aritmética

Media aritmética para datos agrupados

Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la media es:

media

media

Ejercicio de media aritmética

En un test realizado a un grupo de 42 personas se han obtenido las puntuaciones que muestra la tabla. Calcula la puntuación media.

  xi fi xi · fi
[10, 20) 15 1 15
[20, 30) 25 8 200
[30,40) 35 10 350
[40, 50) 45 9 405
[50, 60 55 8 440
[60,70) 65 4 260
[70, 80) 75 2 150
    42 1 820

media

Propiedades de la media aritmética

1. La suma de las desviaciones de todas las puntuaciones de una distribución respecto a la media de la misma igual a cero.

expresión

La suma de las desviaciones de los números 8, 3, 5, 12, 10 de su media aritmética 7.6 es igual a 0:

8 − 7.6 + 3 − 7.6 + 5 − 7.6 + 12 − 7.6 + 10 − 7.6 =

= 0. 4 − 4.6 − 2.6 + 4. 4 + 2. 4 = 0

2. La suma de los cuadrados de las desviaciones de los valores de la variable con respecto a un número cualquiera se hace mínima cuando dicho número coincide con la media aritmética.

mínimo

3. Si a todos los valores de la variable se les suma un mismo número, la media aritmética queda aumentada en dicho número.

4. Si todos los valores de la variable se multiplican por un mismo número la media aritmética queda multiplicada por dicho número.

Observaciones sobre la media aritmética

1. La media se puede hallar sólo para variables cuantitativas.

2. La media es independiente de las amplitudes de los intervalos.

3. La media es muy sensible a las puntuaciones extremas. Si tenemos una distribución con los siguientes pesos:

65 kg, 69kg , 65 kg, 72 kg, 66 kg, 75 kg, 70 kg, 110 kg.

La media es igual a 74 kg, que es una medida de centralización poco representativa de la distribución.

4. La media no se puede calcular si hay un intervalo con una amplitud indeterminada.

  xi fi
[60, 63) 61.5 5
[63, 66) 64.5 18
[66, 69) 67.5 42
[69, 72) 70.5 27
[72, ∞ )   8
    100

En este caso no es posible hallar la media porque no podemos calcular la marca de clase de último intervalo.


Principio de la página
Inicio
Índice del tema
Imprimir página

Tienda de Cursos Interactivos Vitutor
Tema
Ejercicios
Ejercicios interactivos
Otros ejercicios
Sitio
Compartir: