Escoge la opción correcta:
1La ecuación tiene...
Resolvemos empleando la fórmula para encontrar las raíces de la ecuación de segundo grado
Las raíces son


La ecuación tiene dos soluciones simples que son y
2La ecuación tiene...
Resolvemos empleando la fórmula para encontrar las raíces de la ecuación de segundo grado
La ecuación tiene una solución doble que es:
3La ecuación tiene...
Resolvemos empleando la fórmula para encontrar las raíces de la ecuación de segundo grado
La ecuación tiene una solución doble que es:
4La ecuación tiene...
Resolvemos empleando la fórmula para encontrar las raíces de la ecuación de segundo grado
La ecuación no tiene soluciones reales, ya que el radicando es negativo.
5La ecuación tiene...
Resolvemos empleando la fórmula para encontrar las raíces de la ecuación de segundo grado
Las raíces son


La ecuación tiene dos soluciones simples que son y
.
6La ecuación tiene...
Resolvemos empleando la fórmula para encontrar las raíces de la ecuación de segundo grado
La ecuación no tiene soluciones reales, ya que el radicando es negativo.
Resuelve las siguientes cuestiones:
7Calcula el valor de para que la ecuación
tenga un única solución.
;
Para que la ecuación tenga una raíz doble se debe verificar que el discriminante de la misma sea nulo.
El discriminante es
Igualamos el discriminante a cero y despejamos
Así, cuando se tiene una raiz doble.
8Sabemos que para el polinomio
tiene un raíz doble. Calcula otro valor de
para que dicho polinomio tenga una raíz doble.
m =
Para el valor y para el valor que hayas obtenido en el apartado anterior calcula la solución de la ecuación
![]() ![]() | |
![]() ![]() | |
Que el polinomio tenga una raíz doble quiere decir que la ecuación
tiene una única solución.
Para que la ecuación tenga una única solución se debe verificar que el discriminante sea igual a 0.

Desarrollando se obtiene la ecuación cuadrática
Resolvemos empleando la fórmula para encontrar las raíces de la ecuación de segundo grado
Las raíces son


Por tanto, para que el polinomio dado tenga una raíz doble deberá ser
o
Para , la ecuación
se transforma en:
Para , la ecuación
se transforma en:
Si tienes dudas puedes consultar la teoría
Apuntes es una plataforma dirigida al estudio y la práctica de las matemáticas a través de la teoría y ejercicios interactivos que ponemos a vuestra disposición. Esta información está disponible para todo aquel/aquella que quiera profundizar en el aprendizaje de esta ciencia. Será un placer ayudaros en caso de que tengáis dudas frente algún problema, sin embargo, no realizamos un ejercicio que nos presentéis de 0 sin que hayáis si quiera intentado resolverlo. Ánimo, todo esfuerzo tiene su recompensa.
EN el ejecicio 2 esta mal resuelto el 2x de la nada se vuelve 4x ehhh… esta mal pedagogicamente formulado el ejercicio desearia ver en su totalidad que aplica
hola hay un problema, revise el artículo que se me señala y hay varios ejercicios numero 2 y no encontré el error que mencionas, podrías darme mas datos para así poder rectificar lo que esta mal, te lo agradecería mucho.
hola si la ecuación es x+1=10x+10, la respuesta es x=-1, pues si sustituyes el valor queda -1+1=10(-1)+10 o 0=-10+10, que si cumple.
Hola buenas tardes me podría decir el resultado de este ejercicio de ecuación porfavor
X+1=10x+10??
Las respuestas que diste, no me da en la ecuación