Angles Worksheet

Solutions

1Convert the following units into sexagesimal form:

18,179''.

27,520''.

2Convert the following units into decimal form:

12° 30' 42''.

3Express the following angles in degrees:

1 3 rad.

22π/5rad.

33π/10 rad.

4Express the following angles in radians:

1316°

2 10°

3 127º

5Calculate:

68º 35' 42'' + 56º 46' 39''.

6Calculate:

1(132° 26' 33'') × 5.

2(128° 42' 36'') × 3.

7Calculate:

1(132° 26' 33'') : 3.

2(226° 40' 36'') : 6.

8 Determine the complementary and supplementary angle of 38° 36' 43''.

9Determine the complementary and supplementary angle of 25° 38' 40''.


1

Convert the following units into sexagesimal form:

18,179''.

Sexagesimal Conversion

27,520''.

Sexagesimal Conversion


2

Convert the following units into decimal form:

12° 30' 42''.

Decimal Conversion


3

Express the following angles in degrees:

13 rad.

Conversion to Degrees

Conversion to Degrees


22π/5rad.

Conversion to Degrees


33π/10 rad.

Conversion to Degrees


4

Express the following angles in radians:

1316°.

Conversion to Radians


2 10°.


3 127º.


5

Calculate:

68º 35' 42'' + 56º 46' 39''.

Sexagesimal Addition


6

Calculate:

1(132° 26' 33'') × 5.

Sexagesimal Multiplication

2(128° 42' 36'') × 3.

Sexagesimal Mulitplication


7

Calculate:

1(132° 26' 33'') : 3.

Sexagesimal Division

2(226° 40' 36'') : 6.

Sexagesimal Division


8

Determine the complementary and supplementary angle of 38° 36' 43''.

Complementary and Supplementary Angle

Complementary and Supplementary angle


9

Determine the complementary and supplementary angle of 25° 38' 40''.

Complementary and Supplementary Angle

Complementary and Supplementary Angle