Factorización de un polinomio

Sacar factor común

Consiste en aplicar la propiedad distributiva:

a · b + a · c + a · d = a (b + c + d)

Ejemplos

Descomponer en factores sacando factor común y hallar las raíces

1. x3 + x2 = x2 (x + 1)

La raíces son: x = 0 y x = −1

2. 2x4 + 4x2 = 2x2 (x2 + 2)

Sólo tiene una raíz x = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.

3. x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)

La raíces son x = a y x = b.

Diferencia de cuadrados

Una diferencia de cuadrados es igual a suma por diferencia.

a2 − b2 = (a + b) · (a − b)

Ejemplos

Descomponer en factores y hallar las raíces

1. x2 − 4 = (x + 2) · (x − 2)

Las raíces son x = −2 y x = 2

2. x4 − 16 = (x2 + 4) · (x2 − 4) = (x + 2) · (x − 2) · (x2 + 4)

Las raíces son x = −2 y x = 2

Trinomio cuadrado perfecto

Un trinomio cuadrado perfecto es igual a un binomio al cuadrado.

a2 ± 2 a b + b2 = (a ± b)2

Ejemplos

Descomponer en factores y hallar las raíces

1. trimomio

La raíz es x = −3, y se dice que es una raíz doble.

2. trimomio

La raíz es x = 2.

Trinomio de segundo grado

Para descomponer en factores el trinomio de segundo grado P(x) = ax2 + bx + c , se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:

ax2 + bx + c = a · (x − x1) · (x − x2)

Ejemplos

Descomponer en factores y hallar las raíces

1. trinomio

trinomio

ecuación de 2º grado

factorización

Las raíces son x = 3 y x = 2.

2. trinomio

trinomio

ecuación de 2º grado

factorización

Las raíces son x = 3 y x = −2.

Trinomios de cuarto grado de exponentes pares

Para hallar las raíces se iguala a cero y se resuelve la ecuación bicuadrada.

Ejemplos

1. x4 − 10x2 + 9

x2 = t

x4 − 10x2 + 9 = 0

t2 − 10t + 9 = 0

bicuadrada

soluciones

soluciones

x4 − 10x2 + 9 = (x + 1) · (x − 1) · (x + 3) · (x − 3)

2. x4 − 2x2 − 3

x2 = t

t2 − 2t − 3 = 0

bicuadrada

soluciones

soluciones

x4 − 2x2 + 3 = (x2 + 1) · (x + RAÍZ DE TRES) · (x − RAÍZ DE TRES)

Factorización de un polinomio de grado superior a dos

Utilizamos el teorema del resto y la regla de Ruffini para encontrar las raíces enteras.

Los pasos a seguir los veremos con el polinomio:

P(x) = 2x4 + x3 − 8x2 − x + 6

1Tomamos los divisores del término independiente: ±1, ±2, ±3.

2Aplicando el teorema del resto sabremos para que valores la división es exacta.

P(1) = 2 · 14 + 13 − 8 · 12 − 1 + 6 = 2 + 1− 8 − 1 + 6 = 0

3Dividimos por Ruffini.

Ruffini

4Por ser la división exacta, D = d · c

(x − 1) · (2x3 + 3x2 − 5x − 6 )

Una raíz es x = 1.

Continuamos realizando las mismas operaciones al segundo factor.

Volvemos a probar por 1 porque el primer factor podría estar elevado al cuadrado.

P(1) = 2 · 13 + 3 · 12 − 5 · 1 − 6≠ 0

P(−1) = 2 · (−1)3 + 3 · (−1)2 − 5 · (−1) − 6 = −2 + 3 + 5 − 6 = 0

Ruffini

(x −1) · (x + 1) · (2x2 +x −6)

Otra raíz es x = −1.

El tercer factor lo podemos encontrar aplicando la ecuación de 2º grado o tal como venimos haciéndolo, aunque tiene el inconveniente de que sólo podemos encontrar raíces enteras.

El 1 lo descartamos y seguimos probando por 1.

P(−1) = 2 · (−1)2 + (−1) − 6 ≠ 0

P(2) = 2 · 22 + 2 − 6 ≠ 0

P(−2) = 2 · (−2)2 + (−2) − 6 = 2 · 4 − 2 − 6 = 0

Ruffini

(x − 1) · (x + 1) · (x + 2) · (2x − 3)

Sacamos factor común 2 en último binomio y encontramos una raíz racional.

2x − 3 = 2 (x − 3/2)

La factorización del polinomio queda:

P(x) = 2x4 + x3 − 8x2 − x + 6 = 2 (x −1) · (x +1) · (x +2) · (x − 3/2)

Las raíces son : x = 1, x = − 1, x = −2 y x = 3/2

Raíces racionales

Puede suceder que el polinomio no tenga raíces enteras y sólo tenga raíces racionales.

En este caso tomamos los divisores del término independiente dividido entre los divisores del término con mayor grado, y aplicamos el teorema del resto y la regla de Ruffini.

P(x) = 12x3 + 8x2 − 3x− 2

Probamos por: divisores.

teorema del resto

Ruffini

Factorización

T. del  resto

T. del resto

Ruffini

Factorización

Sacamos factor común 12 en el tercer factor.

Factorización


Principio de la página
Inicio
Índice del tema
Imprimir página

Tienda de Cursos Interactivos Vitutor
Tema
Ejercicios
Ejercicios interactivos
Otros ejercicios
Sitio
Compartir: