Sacar factor común

Consiste en aplicar la propiedad distributiva:

a · b + a · c + a · d = a (b + c + d)

Ejemplos

Descomponer en factores sacando factor común y hallar las raíces

1. x3 + x2 = x2 (x + 1)

La raíces son: x = 0 y x = −1

2. 2x4 + 4x2 = 2x2 (x2 + 2)

Sólo tiene una raíz x = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.

3. x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)

La raíces son x = a y x = b.

Diferencia de cuadrados

Una diferencia de cuadrados es igual a suma por diferencia.

a2 − b2 = (a + b) · (a − b)

Ejemplos

Descomponer en factores y hallar las raíces

1. x2 − 4 = (x + 2) · (x − 2)

Las raíces son x = −2 y x = 2

2. x4 − 16 = (x2 + 4) · (x2 − 4) = (x + 2) · (x − 2) · (x2 + 4)

Las raíces son x = −2 y x = 2

Trinomio cuadrado perfecto

Un trinomio cuadrado perfecto es igual a un binomio al cuadrado.

a2 ± 2 a b + b2 = (a ± b)2

Ejemplos

Descomponer en factores y hallar las raíces

1. trimomio

La raíz es x = −3, y se dice que es una raíz doble.

2. trimomio

La raíz es x = 2.

Trinomio de segundo grado

Para descomponer en factores el trinomio de segundo grado P(x) = ax2 + bx + c , se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:

ax2 + bx + c = a · (x − x1) · (x − x2)

Ejemplos

Descomponer en factores y hallar las raíces

1. trinomio

trinomio

ecuación de 2º grado

factorización

Las raíces son x = 3 y x = 2.

2. trinomio

trinomio

ecuación de 2º grado

factorización

Las raíces son x = 3 y x = −2.

Trinomios de cuarto grado de exponentes pares

Para hallar las raíces se iguala a cero y se resuelve la ecuación bicuadrada.

Ejemplos

1. x4 − 10x2 + 9

x2 = t

x4 − 10x2 + 9 = 0

t2 − 10t + 9 = 0

bicuadrada

soluciones

soluciones

x4 − 10x2 + 9 = (x + 1) · (x − 1) · (x + 3) · (x − 3)

2. x4 − 2x2 − 3

x2 = t

t2 − 2t − 3 = 0

bicuadrada

soluciones

soluciones

x4 − 2x2 + 3 = (x2 + 1) · (x + RAÍZ DE TRES) · (x − RAÍZ DE TRES)

Factorización de un polinomio de grado superior a dos

Utilizamos el teorema del resto y la regla de Ruffini para encontrar las raíces enteras.

Los pasos a seguir los veremos con el polinomio:

P(x) = 2x4 + x3 − 8x2 − x + 6

1Tomamos los divisores del término independiente: ±1, ±2, ±3.

2Aplicando el teorema del resto sabremos para que valores la división es exacta.

P(1) = 2 · 14 + 13 − 8 · 12 − 1 + 6 = 2 + 1− 8 − 1 + 6 = 0

3Dividimos por Ruffini.

Ruffini

4Por ser la división exacta, D = d · c

(x − 1) · (2x3 + 3x2 − 5x − 6 )

Una raíz es x = 1.

Continuamos realizando las mismas operaciones al segundo factor.

Volvemos a probar por 1 porque el primer factor podría estar elevado al cuadrado.

P(1) = 2 · 13 + 3 · 12 − 5 · 1 − 6≠ 0

P(−1) = 2 · (−1)3 + 3 · (−1)2 − 5 · (−1) − 6 = −2 + 3 + 5 − 6 = 0

Ruffini

(x −1) · (x + 1) · (2x2 +x −6)

Otra raíz es x = −1.

El tercer factor lo podemos encontrar aplicando la ecuación de 2º grado o tal como venimos haciéndolo, aunque tiene el inconveniente de que sólo podemos encontrar raíces enteras.

El 1 lo descartamos y seguimos probando por 1.

P(−1) = 2 · (−1)2 + (−1) − 6 ≠ 0

P(2) = 2 · 22 + 2 − 6 ≠ 0

P(−2) = 2 · (−2)2 + (−2) − 6 = 2 · 4 − 2 − 6 = 0

Ruffini

(x − 1) · (x + 1) · (x + 2) · (2x − 3)

Sacamos factor común 2 en último binomio y encontramos una raíz racional.

2x − 3 = 2 (x − 3/2)

La factorización del polinomio queda:

P(x) = 2x4 + x3 − 8x2 − x + 6 = 2 (x −1) · (x +1) · (x +2) · (x − 3/2)

Las raíces son : x = 1, x = − 1, x = −2 y x = 3/2

Raíces racionales

Puede suceder que el polinomio no tenga raíces enteras y sólo tenga raíces racionales.

En este caso tomamos los divisores del término independiente dividido entre los divisores del término con mayor grado, y aplicamos el teorema del resto y la regla de Ruffini.

P(x) = 12x3 + 8x2 − 3x− 2

Probamos por: divisores.

teorema del resto

Ruffini

Factorización

T. del  resto

T. del resto

Ruffini

Factorización

Sacamos factor común 12 en el tercer factor.

Factorización